Обзор систем аналитики: маркетинговой, сквозной, продуктовой. Какие системы аналитики и для чего интегрировать в продукт

Данный пост написан Антоном Елфимовым, аналитиком-консультантом. С 2012 года Антон помогает компаниям внедрять и получать инсайты из систем аналитики (Google Analytics, Mixpanel, Amplitude, Appsflyer и т.д.)

Далее повествование ведется от лица автора.

Ко мне часто обращаются с вопросом: “Мы планируем внедрять аналитику в продукт. Какие системы аналитики стоит использовать?”

Любая система аналитики – это всего лишь инструмент. Поэтому при выборе системы аналитики для вашего продукта вам нужно сначала составить список задач, которые вы хотите решать с ее помощью.

Типы аналитических задач и соответствующие системы аналитики

Системы аналитики и соответствующие им аналитические задачи можно разделить на следующие типы:

  • системы маркетинговой аналитики (расчет стоимости привлечения и ROI, отслеживание источников трафика)
  • системы продуктовой аналитики (анализ поведения пользователей в продукте, анализ влияния продуктовых изменений на пользователей)
  • системы для глубокого продвинутого анализа данных (глубокая продуктовая аналитика, построение прогнозных моделей, поиск корреляций между действиями пользователей)
  • системы мониторинга (все ли хорошо с продуктом на разных уровнях его функционирования)

Далее мы обсудим все основные типы аналитических задач и инструменты для их решения.

Системы маркетинговой аналитики и задачи, которые они решают

Маркетинговой команде важно уметь отслеживать трафик и понимать, как он проходит сквозь воронку привлечения, как конвертируется на каждом этапе.

Поэтому для маркетинговой аналитики нужны инструменты, которые решают следующие задачи:

  • Определение источника трафика, лидов, регистраций, установок, клиентов.
  • Расчет стоимости привлечения лида, регистрации, установки приложения (CPL, CPR, CPI) и стоимость привлечения клиента (CAC).
  • Расчет ROI/ROMI по платным рекламным кампаниям и каналам с применением разных моделей атрибуции.

Инструменты для маркетинговой аналитики для веб-сервисов и мобильных приложений отличаются, поэтому будем с ними разбираться отдельно.

Сквозная маркетинговая аналитика для веб-сервисов

Основные задачи маркетинговой аналитики для веб-сервисов решают с помощью инструментов сквозной аналитики.

Инструменты сквозной аналитики работают по следующему алгоритму:

  1. Выгрузить данные о расходах из рекламных систем (Google Ads, Яндекс Директ, Facebook Ads и тд).
  2. Выгрузить данные о целевых действиях (регистрациях, заказах, оплатах) и о доходах из CRM или базы данных.
  3. Загрузить данные о расходах и доходах в единую базу данных и объединить их по какому-либо общему параметру (user_id, client_id).
  4. Построить нужные маркетологу отчеты с возможностью переключать модели атрибуции конверсий.
  5. Принять решение о том, какие кампании масштабировать, какие улучшать, какие остановить.

Чтобы понять, что такое модель атрибуции, какие они бывают, как работают и какие в них есть подводные камни рекомендую посмотреть видео Ильи Красинского.

Есть два типа решений сквозной аналитики:

  1. Сервисы сквозной аналитики (Roistat, Alytics, Rick.ai, Calltouch, Comagic, Primegate, Utmstat и другие).
  2. Сборные схемы сквозной аналитики.

Сервисы сквозной аналитики закрывают большинство задач маркетинговой аналитики с помощью своих базовых отчетов. Если данные о лидах и клиентах у вас хранятся в одной из популярных CRM, то это сервисы можно быстро настроить, часто без помощи разработчиков.

Если нужна очень большая гибкость в отчетах, то в этом случае вы можете собрать своё решение для маркетинговой сквозной аналитики. Для этого понадобятся следующие составные части:

  1. Хранилище данных (Google BigQuery, Google Analytics, RedShift, ClickHouse и другие).
  2. Коннекторы для передачи данных о расходах и доходах (OWOX BI Pipeline, Stitch, GA Connector и другие).
  3. Визуализаторы (Google Data Studio, Power BI, Tableau, Redash и другие).

Обзор систем аналитики

Я рекомендую для расширенной маркетинговой аналитики использовать связку Google Analytics + OWOX BI Pipeline + Google BigQuery + Google Data Studio.

Маркетинговая аналитика для мобильных приложений

Проанализировать эффективность каналов привлечения для мобильных продуктов сложнее, чем для веб-сервисов, так как между переходом пользователя по рекламе и установкой приложения находится посредник – магазин приложений (App Store или Google Play). Именно на этом шаге информация об источнике трафика теряется.

Для решения задачи определения источника трафика для новых пользователей мобильных приложений используют специальные системы для аналитики и атрибуции мобильного трафика. Для маркетинговой аналитики мобильных продуктов обычно используют:

Системы маркетинговой аналитики для мобильных приложений работают следующим образом (это упрощенная схема для вашего понимания):

  • Вы создаете в интерфейсе системы аналитики специальную ссылку и используете ее в рекламной кампании.
  • Когда пользователь кликает по рекламной ссылке, то он сначала попадает на сервис редиректов системы аналитики, а лишь потом в магазин приложений. Для пользователя это все происходит бесшовно, то есть выглядит просто, как переход в магазин приложений. Но на этом промежуточном этапе система аналитики сохраняет информацию о пользователе и о его источнике трафика.
  • Пользователь устанавливает приложение и запускает его. SDK системы аналитики (интегрируется в приложение заранее), отправляет событие установки на сервер системы аналитики с информацией про пользователя.
  • В этот момент система аналитики находит соответствие между теми, кто проходил через ее сервис редиректов и информацией о новом пользователе, таким образом, определяя источник трафика. Если соответствия нет, то система аналитики считает, что этот пользователь пришел органически.
  • Далее SDK системы аналитики отправляет дополнительные данные о действиях пользователя в приложении (например, прохождение онбординга, покупки) на сервер системы аналитики.
  • Система аналитики также получает от рекламных систем данные о расходах по рекламным кампаниям.
  • Система аналитики связывает между собой данные о кликах по рекламе, установках приложения, расходах и доходах от покупок внутри приложения.

Подробнее прочитать про то, как работают алгоритмы определения источников установок мобильных продуктов, можно здесь.

Схема работы трекинга в AppMetrica

Таким образом, в системе аналитики вы видите статистику в разбивке по каналам и кампаниям: объем трафика, конверсии, расходы и доходы. Далее эти данные можно анализировать в любых удобных вам срезах.

Пример сводного отчета в Appsflyer

Системы продуктовой аналитики и задачи, которые они решают

У продакт-менеджеров и других членов продуктовых команд есть большой пласт задач, связанный с пониманием продукта и его пользователей:

  • Поиск препятствий на пути пользователя к решению задачи в продукте.
  • Оценка популярности разной функциональности продукта.
  • Измерение эффекта от сделанных изменений на ключевые продуктовые метрики.
  • Оценка результатов А/В тестов.

Эти задачи можно решить с помощью инструментов продуктовой аналитики, в которых есть готовые отчеты для анализа воронок, когортного анализа, расчета Retention, анализа монетизации и т.д.

Наиболее яркими представителями сервисов для продуктовой аналитики являются:

  • Amplitude;
  • Mixpanel;
  • Woopra;
  • Heap Analytics.

Из огромного количества систем аналитики хочется отдельно выделить Amplitude как оптимальный инструмент для тех, кто сфокусирован на развитии продукта. У этой системы аналитики есть бесплатный тарифный план с очень хорошим пакетом базовых отчетов и большим лимитом событий (10 млн событий в месяц).

Amplitude – это базовая система продуктовой аналитики, которую можно использовать для решения разных типов аналитических задач:

  • есть бесплатный план с базовыми отчетами, которые закрывают 80-95% задач продуктовой аналитики;
  • есть возможность выгружать данные, чтобы потом обработать в Excel/Google Spreadsheets;
  • есть возможность подключить BI инструменты, чтобы делать кастомные отчеты и более глубокую продуктовую аналитику;
  • можно создавать дашборды для всей команды, чтобы мониторить метрики продукта на разных уровнях воронки;
  • можно даже настроить передачу данных о каналах привлечения и оценивать маркетинговые метрики, но все же лучше для этого использовать специализированные сервисы.

Для решения задач более глубокой аналитики (создания кастомных отчетов, поиска корреляции между действиями в продукте, построения прогнозных моделей для выручки или оттока пользователей) нужны инструменты BI анализа и визуализации данных.

Для этих задач обычно используют Power BI, Tableau, Google Data Studio. Для работы с этими инструментами потребуются знания SQL или Python.

Обзор типов систем аналитики: от маркетинговой до глубокой продуктовой аналитики

Для решения разных типов аналитических задач вам нужны разные инструменты. В зависимости от стадии развития вашего продукта и типа аналитических задач вам надо выбрать от 1 до 4 систем аналитики, каждая из которых закрывает аналитические задачи разных типов.

Популярные системы аналитики для разных типов аналитических задач

Некоторые аналитические системы помогают решать несколько типов аналитических задач, например, Google Analytics можно использовать для маркетинговой аналитики и для продуктовой аналитики при грамотной настройке отправки событий из продукта.

Хорошей практикой является интеграция как минимум двух систем аналитики в свой продукт. Это нужно для подстраховки, чтобы, например, сделать быструю проверку данных в обеих системах перед принятием важных и рискованных решений. Также если в одной из систем аналитики что-то пойдет не так и данные потеряются, то будет возможность проанализировать данные в другой системе.

Оптимальный набор аналитических инструментов для мобильных и веб продуктов

На практике оптимальный набор аналитических инструментов для веб-продуктов выглядит следующим образом:

  • Segment в качестве Customer Data Hub
  • Google Analytics
  • OWOX BI Pipeline или Stitch Data
  • Amplitude
  • Mode Analytics (для задач продвинутой аналитики данных)

Оптимальный набор аналитических инструментов для мобильных продуктов:

  • Segment в качестве Customer Data Hub
  • Firebase (бесплатная система аналитики на всякий случай)
  • Appsflyer (система маркетинговой аналитики)
  • Amplitude (система продуктовой аналитики)
  • Mode Analytics.

В обоих наборах есть Mode Analytics в качестве системы аналитики для продвинутых задач. В Mode можно использовать SQL, Python и R для анализа данных, строить практически любые дашборды и отчеты и делиться ими с коллегами.

У вас есть еще вопросы про настройку систем аналитики?

Данная статья является частью постоянно обновляющегося материала с популярными вопросами и ответами про настройку и выбор систем аналитики. Если у вас есть вопросы, то вы можете задать их в комментариях к той статье, и мы постараемся ответить.

 

Если вы хотите научиться управлять продуктом на основе аналитики и данных, то Симулятор, образовательный продукт от GoPractice, вам в этом поможет.

А еще мы завели канал «GoPractice!» и чат «Ask Kevin!» в Телеграмме. Подписывайтесь.